14 de junio de 2010

Lenguajes de programación.-

Tras el desarrollo de las primeras computadoras surgió la necesidad de programarlas para que realizaran las tareas deseadas.

Los lenguajes más primitivos fueron los denominados lenguajes máquina. Como el hardware se desarrollaba antes que el software, estos lenguajes se basaban en el hardware, con lo que cada máquina tenía su propio lenguaje y por ello la programación era un trabajo costoso, válido sólo para esa máquina en concreto.

El primer avance fue el desarrollo de las primeras herramientas automáticas generadoras de código fuente. Pero con el permanente desarrollo de las computadoras, y el aumento de complejidad de las tareas, surgieron a partir de los años 50 los primeros lenguajes de programación de alto nivel.

Con la aparición de los distintos lenguajes, solían aparecer diferentes versiones de un mismo lenguaje, por lo que surgió la necesidad de estandarizarlos para que fueran más universales. Las organizaciones que se encargan de regularizar los lenguajes son ANSI (Instituto de las Normas Americanas) y ISO (Organización de Normas Internacionales).

Evolución de los lenguajes de programación:

1950
Lenguaje Ensamblador (lenguaje máquina)

Lenguajes experimentales de alto nivel
1955

1956
FORTRAN

ALGOL 58 y 60

COBOL

LISP
1960

1961
FORTRAN IV

COBOL 61 Extendido

ALGOL 60 Revisado

SNOBOL

BASIC

APL (como notación sólo)

PL/I
1965

1966
APL/360

FORTRAN 66 (estándar)

COBOL 65 (estándar)

ALGOL 68

SNOBOL 4

SIMULA 67
1970

1971

COBOL 74

PASCAL
1975

1976

ADA

FORTRAN 77

PROLOG

C

Modula-2
1980

1980
C++

JAVA
2000

9 de junio de 2010

Historia de la Informática

Cronología.

3500 a.c. Se inventa el ábaco (en Babilonia), primera "máquina" para realizar cálculos.

Ábaco chino:
1617 John Napier inventa sus varillas de numeración (o huesos de Napier).

1621 Invención de la regla de cálculo.

Regla de cálculo:

1624 Wilhelm Schickard construye la primera calculadora mecánica.

1639 Blaise Pascal inventa y fabrica una sumadora mecánica llamada la Pascalina.

1673 Gottfried Wilhelm Leibniz diseña y construye una máquina mecánica para realizar cálculos aritméticos. El sistema diseñado por Leibniz se usó en años posteriores para fabricar calculadoras mecánicas.

1800 Tarjetas perforadas de Jacquard.

Tarjeta perforada:

1822 Charles Babbage presenta su proyecto de la máquina en diferencias, para evaluar polinomios.

1830 Babbage presenta las bases de la informática en su proyecto de la máquina analítica, que nunca se llegó a construir.

1854 George Boole desarrolla el álgebra que lleva su nombre: álgebra booleana.

1885 Herman Hollerith construye la máquina censadora o tabuladora, que por medio de tarjetas perforadas reducía el tiempo al realizar el censo.

Máquina censadora:
1894 Leonardo Torres Quevedo presenta su máquina algebraica.

1924 T. J. Watson renombra el empresa CTR, por International Business Machines (IBM)

Logo de IBM en 1924:1930 Vannevar Bush diseña una máquina analógica que resolvía ecuaciones diferenciales: el Analizador Diferencial.

1937 Inicio de la teoría de la computabilidad con la descripción de la máquina de Turing.

8 de junio de 2010

Teorema de Pitágoras

Teorema

Pitágoras de Samos fue un filósofo griego que vivió alrededor del año 530 a.C., residiendo la mayor parte de su vida en la colonia griega de Crotona, en el sur de Italia. De acuerdo con la tradición fue el primero en probar la afirmación (teorema) que hoy lleva su nombre:

Si un triángulo tiene lados de longitud (a,b,c), con los lados (a,b) formando un ángulo de 90 grados ("ángulo recto"), tenemos que

a2 + b2 = c2

Un ángulo recto se puede definir como el ángulo formado cuando dos líneas rectas se cruzan de tal forma que los cuatro ángulos que forman son iguales. El teorema también se puede definir de otra forma: si las longitudes de los tres lados (a,b,c) de un triángulo satisfacen la relación anterior, el ángulo entre los lados a y b debe ser de 90 grados.

Por ejemplo, un triángulo con los lados a = 3, b = 4, c = 5 (pulgadas, pies, metros,... lo que sea) es rectángulo porque

a2 + b2 = 32 + 42
= 9 + 16 = 25 = c2

Los maestros de obras del antiguo Egipto pudieron conocer el triángulo (3,4,5) y usarlo (mediante cañas o cuerdas calibradas) para construir ángulos rectos; aún hoy en día los albañiles usan tableros con clavos con esas longitudes que les ayudan a alinear una esquina.

Existen muchas pruebas, y las más fáciles son probablemente las que están basadas en el álgebra, usando las igualdades elementales presentadas en la sección precedente, a saber

(a + b)2 = a2 + 2ab + b2

(recuerde que 2ab significa 2 veces a veces b). Por ejemplo

152 = (10 + 5)2

= 102 + (2)(10)(5) + 52
= 100 + 100 + 25 = 225
y

(a - b) 2 = a2 - 2ab + b2
Por ejemplo:

52 = (10 - 5)2
= 102 - (2)(10)(5) + 52
= 100 - 100 + 25 = 25

También es necesario conocer algunas áreas simples: el área de un rectángulo es (longitud) por (altura), de tal forma que el área del presentado arriba es ab. Una diagonal lo divide en dos triángulos rectángulos siendo los lados cortos a y b, y el área de ese triángulo es, por consiguiente, (1/2) ab.



Vea el cuadrado de la izquierda construido por cuatro triángulos (a,b,c). la longitud de cada lado es (a+b) y, por lo tanto, el cuadrado tiene un área de (a+b)2.



No obstante, el cuadrado se puede a su vez dividir en cuatro triángulos (a,b,c) más un cuadrado de lado c en el centro (en rigor, también debemos de probar que es un cuadrado, pero nos saltaremos esto). El área de cada triángulo, como se mostró anteriormente, es (1/2)ab, y el área del cuadrado es c2. Como el cuadrado grande es igual a la suma de todas sus partes

(a + b) 2 = (4)(1/2)(a)(b) + c2

Usando la igualdad para (a + b)2 y multiplicando (4)(1/2) = 2

a2 + 2ab + b2 = 2ab + c2

Reste 2ab de ambos lados y obtendrá

a2 + b2 = c2

Se puede mostrar el mismo resultado usando un cuadrado diferente, de área c2. Como muestra el dibujo de la derecha, esa área puede dividirse en cuatro triángulos como los anteriores, más un pequeño cuadrado de lado (a-b). Obtenemos

c2 = (4)(1/2)(a)(b) + (a-b) 2

= 2ab + (a2 - 2ab + b2)

= a2 + b2 Q.E.D.

Q.E.D. simboliza "quod erat demonstrandum," en latín "lo que queda demostrado," que en los libros de geometría, tradicionalmente, marcaban el final de una demostración. La importancia del trabajo de Pitágoras y de los siguientes maestros de geometría griegos, especialmente Euclides, no fue solo lo que probaron, sino el método que desarrollaron: comenzar desde algunas afirmaciones básicas ("axiomas") y deducir mediante la lógica sus consecuencias más complicadas ("teoremas"). Los matemáticos aún siguen ese modelo.

Pitagoras "El Padre de la Matemática"

Biografía.

Pitágoras nació en la isla de Samos en el año 582 a. C. Siendo muy joven viajó a Mesopotamia y Egipto (también, fue enviado por su tío, Zoilo, a Mitilene a estudiar con Ferécides de Siros y tal vez con su padre, Badio de Siros). Tras regresar a Samos, finalizó sus estudios, según Diógenes Laercio con Hermodamas de Samos y luego fundó su primera escuela durante la tiranía de Polícrates. Abandonó Samos para escapar de la tiranía de Polícrates y se estableció en la Magna Grecia, en Crotona alrededor del 525 a. C., en el sur de Italia, donde fundó su segunda escuela. Las doctrinas de este centro cultural eran regidas por reglas muy estrictas de conducta. Su escuela (aunque rigurosamente esotérica) estaba abierta a hombres y mujeres indistintamente, y la conducta discriminatoria estaba prohibida (excepto impartir conocimiento a los no iniciados). Sus estudiantes pertenecían a todas las razas, religiones, y estratos económicos y sociales. Tras ser expulsados por los pobladores de Crotona, los pitagóricos se exiliaron en Tarento donde se fundó su tercera escuela.

Poco se sabe de la niñez de Pitágoras. Todas las pistas de su aspecto físico probablemente sean ficticias excepto la descripción de una marca de nacimiento llamativa que Pitágoras tenía en el muslo. Es probable que tuviera dos hermanos aunque algunas fuentes dicen que tenía tres. Era ciertamente instruido, aprendió a tocar la lira, a escribir poesía y a recitar a Homero. Había tres filósofos, entre sus profesores, que debieron de haber influido a Pitágoras en su juventud. El esfuerzo para elevarse a la generalidad de un teorema matemático a partir de su cumplimiento en casos particulares ejemplifica el método pitagórico para la purificación y perfección del alma, que enseñaba a conocer el mundo como armonía; en virtud de ésta, el universo era un cosmos, es decir, un conjunto ordenado en el que los cuerpos celestes guardaban una disposición armónica que hacía que sus distancias estuvieran entre sí en proporciones similares a las correspondientes a los intervalos de la octava musical. En un sentido sensible, la armonía era musical; pero su naturaleza inteligible era de tipo numérico, y si todo era armonía, el número resultaba ser la clave de todas las cosas.

La voluntad unitaria de la doctrina pitagórica quedaba plasmada en la relación que establecía entre el orden cósmico y el moral; para los pitagóricos, el hombre era también un verdadero microcosmos en el que el alma aparecía como la armonía del cuerpo. En este sentido, entendían que la medicina tenía la función de restablecer la armonía del individuo cuando ésta se viera perturbada, y, siendo la música instrumento por excelencia para la purificación del alma, la consideraban, por lo mismo, como una medicina para el cuerpo. La santidad predicada por Pitágoras implicaba toda una serie de normas higiénicas basadas en tabúes como la prohibición de consumir animales, que parece haber estado directamente relacionada con la creencia en la transmigración de las almas; se dice que el propio Pitágoras declaró ser hijo de Hermes, y que sus discípulos lo consideraban una encarnación de Apolo.

Historia de la Matemática

Historia.

La Historia de la Matemática es un área de estudio que abarca las investigaciones sobre los orígenes de los descubrimientos en matemáticas y, en menor grado, de los métodos matemáticos y la notación.

Antes de la edad moderna y la dispersión del conocimiento a lo largo del mundo, los ejemplos escritos de nuevos desarrollos matemáticos salían a la luz sólo en unos pocos escenarios. Los textos matemáticos más antiguos disponibles son el Plimpton 322 (matemáticas en Babilonia c. 1900 a. C.), el papiro de Moscú (matemáticas en el Antiguo Egipto c. 1850 a. C.), el papiro de Rhind (Matemáticas en Egipto c. 1650 a. C.), y el Shulba Sutras (Matemáticas en la India c. 800 a. C.). Todos estos textos tratan sobre el teorema de Pitágoras, que parece ser el más antiguo y extendido desarrollo matemático después de la aritmética básica y la geometría.

Tradicionalmente se ha considerado que la matemática, como ciencia, surgió con el fin de hacer los cálculos en el comercio, para medir la Tierra y para predecir los acontecimientos astronómicos. Estas tres necesidades pueden ser relacionadas en cierta forma a la subdivisión amplia de la matemática en el estudio de la estructura, el espacio y el cambio.

Las matemáticas egipcias y babilónicas fueron ampliamente desarrolladas por la matemática helénica, donde se refinaron los métodos (especialmente la introducción del rigor matemático en las demostraciones) y se ampliaron los asuntos propios de esta ciencia. Las matemáticas en el Islam, a su vez, desarrollaron y extendieron las matemáticas conocidas por estas civilizaciones ancestrales. Muchos textos griegos y árabes de matemáticas fueron traducidos al latín, lo que llevó a un posterior desarrollo de las matemáticas en la Edad Media.

Desde tiempos ancestrales hasta la Edad Media, las ráfagas de creatividad matemática fueron seguidas, con frecuencia, por siglos de estancamiento. Pero desde el renacimiento italiano, en el siglo XVI, los nuevos desarrollos matemáticos, interactuando con descubrimientos científicos contemporáneos, fueron creciendo exponencialmente hasta el día de hoy.